Package: MFPCA 1.3-9

Clara Happ-Kurz

MFPCA: Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains

Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) <doi:10.1080/01621459.2016.1273115>. Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) <doi:10.18637/jss.v093.i05>.

Authors:Clara Happ-Kurz [aut, cre]

MFPCA_1.3-9.tar.gz
MFPCA_1.3-9.zip(r-4.5)MFPCA_1.3-9.zip(r-4.4)MFPCA_1.3-9.zip(r-4.3)
MFPCA_1.3-9.tgz(r-4.4-x86_64)MFPCA_1.3-9.tgz(r-4.4-arm64)MFPCA_1.3-9.tgz(r-4.3-x86_64)MFPCA_1.3-9.tgz(r-4.3-arm64)
MFPCA_1.3-9.tar.gz(r-4.5-noble)MFPCA_1.3-9.tar.gz(r-4.4-noble)
MFPCA_1.3-9.tgz(r-4.4-emscripten)MFPCA_1.3-9.tgz(r-4.3-emscripten)
MFPCA.pdf |MFPCA.html
MFPCA/json (API)
NEWS

# Install 'MFPCA' in R:
install.packages('MFPCA', repos = c('https://clarahapp.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/clarahapp/mfpca/issues

Uses libs:
  • fftw3– Library for computing Fast Fourier Transforms

On CRAN:

6.91 score 31 stars 4 packages 219 scripts 492 downloads 2 mentions 8 exports 17 dependencies

Last updated 3 years agofrom:d062f86d57. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-win-x86_64NOTEOct 26 2024
R-4.5-linux-x86_64NOTEOct 26 2024
R-4.4-win-x86_64OKOct 26 2024
R-4.4-mac-x86_64OKOct 26 2024
R-4.4-mac-aarch64OKOct 26 2024
R-4.3-win-x86_64OKOct 26 2024
R-4.3-mac-x86_64OKOct 26 2024
R-4.3-mac-aarch64OKOct 26 2024

Exports:FCP_TPAMFPCAPACEscoreplotttvUMPCAunivDecompunivExpansion

Dependencies:abindcodetoolsdotCall64fieldsforeachfunDatairlbaiteratorslatticemapsMatrixmgcvnlmeplyrRcppspamviridisLite